INDICE

PRIMERA PARTE, INTRODUCCION A LA BIOLOGIA CELULAR. METODOS DE ESTUDIO

1.	Introducción e historia de la biología celular 1-1. Niveles de organización en biología Los niveles de organización están correlacionados con el poder resolu-	3
	tivo de los instrumentos utilizados Resumen: Niveles de organización 1-2. Historia de la biología celular	5 7 7 8 8 9
	gración de estructura y función celulares	10 10 10
2.	Células procarióticas y eucarióticas. Estructura general 2-1. Estructura general de las células procarióticas. La Escherichia coli es el organismo procarionte mejor conocido. La masa viviente más pequeña contiene ADN, ARN y una membrana	12 12 12
188	plasmática 2-2. Estructura general de las células eucarióticas La forma celular es específica para cada tipo celular El tamaño celular es generalmente microscópico La célula viviente solo revela algunos de sus componentes estructurales Luego de la fijación, la célula eucariótica revela una organización estructural compleja Resumen: Células procarióticas y eucarióticas 2-3. Conceptos generales sobre núcleo, cromosomas y ciclo celular 2-4. Conceptos básicos sobre mitosis y meiosis La mitosis mantiene la continuidad y el número diploide de los cro-	15 15 15 15 15 17 19 20 21
	mosomas ,	23 25
3.	Análisis instrumental de las estructuras biológicas 3-1. Diversos tipos de microscopios de luz La microscopia de fase detecta pequeñas diferencias en el índice de	27 27
	refracción	28
	continuas en el índice de refracción de estructuras celulares La microscopia de fondo oscuro se basa en la dispersión de la luz a nivel de interfases	30
	La microscopia de polarización usa luz polarizada para detectar anisotropía	30
		00

X INDICE

	3-2.	Microscopia electrónica El material biológico para el ME debe ser extremadamente fino La criofractura divide las membranas a lo largo de planos de clivaje Para los cortes finos se usan resinas de epoxi y ultramicrótomos El contraste se puede aumentar por el método de sombreado metálico	32 34 34 34
		por coloración negativa	34 34
	3-3.	címenes más gruesos Difracción de rayos X Resumen: Microscopia	35 36 40
4 1	Métod	dos citológicos y citoquímicos	43
	4-1.	Cultivo de tejidos y microcirugía	43
	4-2.	Fijación El tetróxido de osmio se usa frecuentemente en microscopia electró-	44
		nica	45
Bill	*	servan la composición química	45
1	1	Los cortes por micrótomo implican el uso de la inclusión	46
VEG.	4-3.	Bases químicas de la coloración	47
	No.	Resumen: Observación de células vivas y fijadas	48
	4-4	Citoquímica	49
		Citoquímica	
		subcelulares	51
		Las partículas y macromoléculas pueden separarse por centrifugación diferencial y en gradiente	52
		de ciertas sustancias	52
	4-5.	Métodos de coloración citoquímica e histoquímica	52
		Citoquímica de las proteínas	53
		El reactivo de Schiff se utiliza para la detección de aldehídos en las	0
		reacciones plasmal, de PAS y Feulgen	53
		Reacción de PAS o Periodic acid-Schiff	55 55
		Diversas enzimas se detectan después de la incubación con sustratos	33
		apropiados	55
	4-6.	Métodos citoquímicos basados en técnicas físicas	57
15		Los métodos citofotométricos usan la absorción específica en el límite	151
		visible y ultravioleta	57
		o mediante el uso de fluorocromos	57
	"	La inmunocitoquímica usa anticuerpos marcados para detectar antíge-	0,
		nos en células y tejidos	58
		Resumen: Citoquímica	61
		SEGUNDA PARTE. COMPONENTES MOLECULARES Y METABOLISMO DE LAS CELULAS	
5.	Bioni	uímica de la célula	67
V.		Componentes químicos de la célula	67
		El agua es el componente molecular más importante	68
		Las sales y los iones son esenciales	68
	52	Las macromoléculas son polímeros de unidades monoméricas repetidas Proteínas	69 69
	J-Z.	La estructura primaria de la proteína es la secuencia de los amino-	09
		ácidos	70
		La estructura secundaria de las proteínas puede adoptar una hélice o	Robe
		una conformación en hoja plegada	70
		En la estructura terciaria la cadena polipeptídica se pliega en forma tri- dimensional de manera precisa	72
		difficultional de mariera precisa	12

INDICE

		La estructura cuaternaria se refiere a las proteinas con varias subuni-	
		dades	. 73
		Las interacciones débiles son esenciales para la estructura de la pro- teína	73
		Las proteínas tienen cargas positivas y negativas, pero en el punto iso- eléctrico la carga neta es cero	74
		Las proteínas celulares pueden separarse por enfoque isoeléctrico y por electroforesis en geles	74
	5-3.	Hidratos de carbono	75
		Los polisacáridos pueden tener propiedades ácidas	77
		Los hidratos de carbono se unen a las proteínas por un mecanismo en	
		dos etapas	77
	5-4.	Lípidos	77
		Los triglicéridos tienen tres ácidos grasos unidos al glicerol	77
		Los lípidos compuestos, tales como los fosfolípidos, son los compo-	
		nentes principales de las membranas biológicas	78
	- BE 8	Resumen: Componentes moleculares de las células	79
	5-5.	Acidos nucleicos	. 8
		Los ácidos nucleicos están formados por una pentosa, fosfato y cuatro	
		bases	81
		La composición de las bases del ADN presenta regularidades (A = T y	0.0
		G = C)	82
		EI ADN es una doble hélice	83
		El ADN puede ser desnaturalizado y vuelto a naturalizar	84
		El ADN circular puede adoptar una conformación superhelicoidal El ARN tiene ribosa (en vez de desoxirribosa) y uracilo (en vez de ti-	8€
			88
		mina)	00
		exclusivamente por una cadena de ARN circular	90
		Resumen: Acidos nucleicos	90
6.	Enzin	nas, bioenergética y respiración celular	93
	6-1.	Enzimas	94
	6-1.	Enzimas	94
	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas	94
	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores	94 94 94 95
	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo	94
	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos	94 94 94 95 95
	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax	94 94 94 95 95
	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos	94 94 95 95 96
120 120 130 130 130 130 130 130 130 130 130 13	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas	94 94 95 95 95 96
120 120 130 130 130 130 130 130 130 130 130 13	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas	94 94 95 95 96
120 120 120 120 120 120 120 120 120 120	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan	94 94 95 95 95 96 97 98
120 120 130 130 130 130 130 130 130 130 130 13	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa Ilena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí	94 94 95 95 96 97 98
136 136 136 136 136 136 136 136 136 136	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan	94 94 95 95 95 96 97 98
120 130 130 132 138 138	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel	94 94 95 95 95 96 97 98 98
130 130 130 130 130 130 130 130 130 130	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica	94 94 95 95 96 97 98
120 120 120 120 120 120 120 120 120 120	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético	94 94 95 95 95 96 98 98
126 130 130 130 136 136 136 136	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas	94 94 95 95 95 96 98 98
126 130 130 135 135 135 135 135	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula	94 94 94 95 95 96 97 98 98 99 100
128 130 130 130 130 130 130 130	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula Bioenergética	944 944 95 95 96 97 98 98 98 99 100
128 130 130 130 136 136 136 136	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula Bioenergética El concepto de entropía está relacionado con el grado de desorden	94 94 94 95 95 96 97 98 98 99 100 102 104
128 130 130 130 136 136 136 136 136	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa Ilena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula Bioenergética El concepto de entropía está relacionado con el grado de desorden molecular	944 944 95 95 96 97 98 98 99 100 100 104
128 130 130 130 136 136 136 136 136	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula Bioenergética El concepto de entropía está relacionado con el grado de desorden molecular La fotosíntesis es esencial en el ciclo biológico de la energía	944 944 95 95 96 97 98 98 99 100 100 104 104
128 130 130 130 136 136 136 136 137	6-1.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula Bioenergética El concepto de entropía está relacionado con el grado de desorden molecular La fotosíntesis es esencial en el ciclo biológico de la energía Las células trasforman energía química en otras formas de energía	94 94 94 95 95 96 97 98 98 99 100 102 104 104 105
128 130 130 130 136 136 136 136 136 136	6-1. 6-2.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula Bioenergética El concepto de entropía está relacionado con el grado de desorden molecular La fotosíntesis es esencial en el ciclo biológico de la energía Las células trasforman energía química en otras formas de energía El ATP tiene uniones de alta energía	94 94 94 95 95 96 97 98 98 99 100 102 104 104 105 106
128 130 130 130 136 136 136 136 136 136 136	6-1. 6-2.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa Ilena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula Bioenergética El concepto de entropía está relacionado con el grado de desorden molecular La fotosíntesis es esencial en el ciclo biológico de la energía Las células trasforman energía química en otras formas de energía El ATP tiene uniones de alta energía Respiración celular	94 94 94 95 95 96 97 98 98 99 100 102 104 105 106 107
128 129 129 129 129 129 129 129 129 129 129	6-1. 6-2.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula Bioenergética El concepto de entropía está relacionado con el grado de desorden molecular La fotosíntesis es esencial en el ciclo biológico de la energía Las células trasforman energía química en otras formas de energía El ATP tiene uniones de alta energía Respiración celular La glucólisis anaerobia solo produce dos ATPs por molécula de glucosa	94 94 94 95 95 96 97 98 98 99 100 102 104 105 106 107 107
128 130 130 130 138 138 138 138 138 138 138 140	6-1. 6-2.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula Bioenergética El concepto de entropía está relacionado con el grado de desorden molecular La fotosíntesis es esencial en el ciclo biológico de la energía Las células trasforman energía química en otras formas de energía El ATP tiene uniones de alta energía Respiración celular La glucólisis anaerobia solo produce dos ATPs por molécula de glucosa La respiración aerobia produce 36 ATPs por molécula de glucosa	94 94 94 95 95 96 97 98 98 99 100 102 104 105 106 107
128 130 130 130 130 130 130 130 130 130 130	6-1. 6-2.	Enzimas Las enzimas son proteínas Las enzimas son muy específicas Algunas enzimas requieren cofactores Los sustratos se unen al sitio activo El comportamiento cinético de muchas enzimas está definido por dos parámetros: Km y Vmax Los inhibidores de las enzimas son muy específicos Algunas enzimas presentan múltiples formas moleculares. Isoenzimas La célula no es simplemente una bolsa llena de enzimas Las enzimas alostéricas tienen varias subunidades que interactúan entre sí Regulación metabólica Las enzimas pueden ser reguladas al nivel del sitio catalítico o a nivel genético Las interconversiones enzimáticas también regulan el metabolismo El AMP cíclico es un segundo mensajero en la acción de muchas hormonas Resumen: Enzimas en la célula Bioenergética El concepto de entropía está relacionado con el grado de desorden molecular La fotosíntesis es esencial en el ciclo biológico de la energía Las células trasforman energía química en otras formas de energía El ATP tiene uniones de alta energía Respiración celular La glucólisis anaerobia solo produce dos ATPs por molécula de glucosa	94 94 94 95 95 96 97 98 98 99 100 102 104 105 106 107 107

XII INDICE

		La cadena respiratoria libera energía a partir de pares de electrones y en diversas etapas	109 109 110
		TERCERA PARTE. LA ESTRUCTURA SUPRAMOLECULAR Y LA SUPERFICIE CELULAR	
7. L	a or	ganización supramolecular y el origen de las células	115
	7-1.	Configuración de las moléculas de proteína	116
	7-2.	Organización de las macromoléculas	116
		proteínas	117
	4	Las fibras de colágeno son agregados supramoleculares de tropocolá-	
		geno	117
04		El fibrinógeno y la trombina están involucrados en la coagulación de la sangre	118
100		El glucógeno se dispone en partículas con tres niveles de organización	118
18	7-3.	Estructuras membranosas elementales	119
. 130	1	Los lípidos tienden a formar monocapas	119 121
200	- E	Los sistemas fosfolípido-agua pueden formar estructuras hexagonales	121
	34	o laminares	121
	-	Los liposomas y las vesículas fosfolipídicas tienen muchas aplicaciones	121
		en biología y medicina	124
	7-4.	El origen de las células	124
		La evolución química produjo moléculas orgánicas que contenían	125
		carbono	125
		Las células procarióticas precedieron a las eucarióticas	126
		Resumen: Origen de las células	126 126
8. X I	_a m	Resumen: Origen de las células	
8. X I	_a m (8-1,	Resumen: Origen de las células	126
8. X I	_ a m . 8-1.	Resumen: Origen de las células	126 129 130
8. X (_ a m . 8-1.	Resumen: Origen de las células embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono	126 129
8. X I	_a m ∈ 8-1.	Resumen: Origen de las células embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicopro-	126 129 130 130 130
8. X I	_a m (8-1.	Resumen: Origen de las células embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas	126 129 130 130 130
8. 🗶	_a m e 8-1.	Resumen: Origen de las células embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas	126 129 130 130 130
8. 🗶	_ a m e 8-1.	Resumen: Origen de las células embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados	126 129 130 130 130
8. 🔭	_ a m (8-1.	Resumen: Origen de las células embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétri-	126 129 130 130 130 132 132
8. 🗓	_a me 8-1.	Resumen: Origen de las células embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente	126 129 130 130 130 132 132 134
8. 🗶	8-1.	embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular Modelos moleculares de la membrana celular	126 129 130 130 130 132 132
8. 🗶	8-1.	embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular Modelos moleculares de la membrana celular El modelo de unidad de membrana está siendo revisado	126 129 130 130 130 132 132 134 135 136 136
8. 🗶	8-1.	Resumen: Origen de las células Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular Modelos moleculares de la membrana celular El modelo de unidad de membrana está siendo revisado El modelo del mosaico fluido ha recibido general aceptación	126 129 130 130 130 132 132 134 135 135 136
8. 🖈	8-1.	Resumen: Origen de las células Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular Modelos moleculares de la membrana está siendo revisado El modelo del mosaico fluido ha recibido general aceptación La fluidez de la membrana se puede estudiar mediante técnicas físicas	126 129 130 130 130 132 132 134 135 136 136
8. 🗶	8-1.	Resumen: Origen de las células embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular Modelos moleculares de la membrana está siendo revisado El modelo del mosaico fluido ha recibido general aceptación La fluidez de la membrana se puede estudiar mediante técnicas físicas y biológicas La fluidez de la membrana explica el acoplamiento de los receptores a	126 129 130 130 130 132 132 134 135 136 136 137 139
8. 🗶	8-1.	Resumen: Origen de las células Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular Modelos moleculares de la membrana está siendo revisado El modelo de unidad de membrana está siendo revisado El modelo del mosaico fluido ha recibido general aceptación La fluidez de la membrana se puede estudiar mediante técnicas físicas y biológicas La fluidez de la membrana explica el acoplamiento de los receptores a la adenilciclasa	129 130 130 130 132 132 134 135 136 136 137
8. ***	8-1.	Resumen: Origen de las células Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular Modelos moleculares de la membrana está siendo revisado El modelo de unidad de membrana está siendo revisado El modelo del mosaico fluido ha recibido general aceptación La fluidez de la membrana se puede estudiar mediante técnicas físicas y biológicas La fluidez de la membrana explica el acoplamiento de los receptores a la adenilciclasa La vaina de mielina y los fotorreceptores contienen membranas mul-	129 130 130 130 132 132 134 135 136 136 137 139
8. ***	8-1.	embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular El modelo de unidad de membrana está siendo revisado El modelo del mosaico fluido ha recibido general aceptación La fluidez de la membrana se puede estudiar mediante técnicas físicas y biológicas La fluidez de la membrana explica el acoplamiento de los receptores a la adenilciclasa La vaina de mielina y los fotorreceptores contienen membranas multilamelares Resumen: Modelos moleculares de la membrana	126 129 130 130 132 132 134 135 136 136 137 139 139 140 143
8. **	8-1.	embrana celular y la permeabilidad. Las interacciones celulares. Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular Modelos moleculares de la membrana celular El modelo de unidad de membrana está siendo revisado El modelo del mosaico fluido ha recibido general aceptación La fluidez de la membrana explica el acoplamiento de los receptores a la adenilciclasa La vaina de mielina y los fotorreceptores contienen membranas multilamelares Resumen: Modelos moleculares de la membrana	129 130 130 130 132 132 134 135 136 136 137 139 139
8. ***	8-1.	embrana celular y la permeabilidad. Las interacciones celulares Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular El modelo de unidad de membrana está siendo revisado El modelo del mosaico fluido ha recibido general aceptación La fluidez de la membrana se puede estudiar mediante técnicas físicas y biológicas La fluidez de la membrana explica el acoplamiento de los receptores a la adenilciclasa La vaina de mielina y los fotorreceptores contienen membranas multilamelares Resumen: Modelos moleculares de la membrana Permeabilidad celular A través de la membrana hay diferencias en la concentración iónica y	126 129 130 130 132 132 134 135 136 136 137 139 139 140 143 143
8. ***	8-1.	embrana celular y la permeabilidad. Las interacciones celulares. Organización molecular de la membrana celular La membrana celular está compuesta por proteínas, lípidos e hidratos de carbono Los lípidos tienen una distribución asimétrica en la membrana Los hidratos de carbono se hallan formando glicolípidos y glicoproteínas Las proteínas de la membrana son periféricas o intrínsecas Los polipéptidos principales de la membrana del eritrocito están bien caracterizados En la membrana hay muchas enzimas que están distribuidas asimétricamente Resumen: Organización molecular de la membrana celular Modelos moleculares de la membrana celular El modelo de unidad de membrana está siendo revisado El modelo del mosaico fluido ha recibido general aceptación La fluidez de la membrana explica el acoplamiento de los receptores a la adenilciclasa La vaina de mielina y los fotorreceptores contienen membranas multilamelares Resumen: Modelos moleculares de la membrana	126 129 130 130 132 132 134 135 136 136 137 139 139 140 143

INDICE	XIII

		El trasporte activo implica el uso de energía. Para el flujo activo de sodio se propone una bomba de sodio. El trasporte iónico implica el uso de poros cargados en la membrana. El trasporte aniónico de los eritrocitos implica el polipéptido de la banda 3. Diversas sustancias utilizan un mecanismo trasportador. La selectividad del trasporte depende de los sistemas de permeasas	145 146 146 148 148 150 150
	8-4.	Las grandes moléculas pueden penetrar en la célula por diversos mecanismos. Resumen: Permeabilidad celular Diferenciaciones de la superficie celular y comunicaciones interce-	151 151
		lulares Las microvellosidades aumentan mucho la superficie de la membrana	152
		celular	152 154
		Las uniones en hendidura o nexus intervienen en las comunicaciones intercelulares	154
		Las uniones en hendidura representan canales permeables a los iones y moléculas pequeñas	157
		El acoplamiento entre las células también implica una cooperación metabólica En las células cancerosas el acoplamiento puede estar alterado	158 159
202		Resumen: Diferenciaciones de la membrana celular y comunicaciones intercelulares	159
	8-5.	Las cubiertas de la membrana y el reconocimiento celular	160 160
		El reconocimiento de una célula con otra implica una adhesión específica y la inhibición por contacto	162
		de la superficie celular	162
208 208 208		tos virus	164 166
		CUARTA PARTE. CITOPLASMA Y ORGANOIDES CITOPLASMATICOS	
9. 1		oesqueleto y la motilidad celular. Microtúbulos y microfilamentos El citosol y el citoesqueleto La trama del citoesqueleto está constituida por microtúbulos y mi-	171 171
	9-2.	crofilamentos Resumen: El citoesqueleto Microtúbulos La tubulina es la principal proteína de los microtúbulos Los microtúbulos se organizan a partir de dímeros de tubulina En células cultivadas los microtúbulos pueden detectarse por anti-	173 174 175 176 176
	9-3.	cuerpos antitubulinas específicos Los microtúbulos citoplasmáticos cumplen diversas funciones Resumen: Propiedades de los microtúbulos Organoides microtubulares, cilios, flagelos y centríolos	177 177 178 179
		Los movimientos ciliar y flagelar se encuentran en diversas células ais- ladas formando tejidos	179 179
		El axonema contiene 9 + 2 pares de microtúbulos Los cuerpos basales o cinetosomas y los centríolos contienen tripletes de microtúbulos	180 180
		En el movimiento ciliar hay desplazamiento de los pares de microtúbulos e intervención de dineína	183

XIV

		En el síndrome de Kartagener hay una mutación que implica la falta	
		de dineína	184
		Los fotorreceptores derivan de cilios.	184
		Los cilios y los flagelos derivan de los cuerpos basales	184
		Resumen: Estructura, movimiento y origen de los cilios y flagelos	187
	9-4.	Microfilamentos	188
		La microscopia electrónica de alto voltaje revela un retículo microtra-	
		becular en el citosol	188
		La actina, miosina y otras proteínas relacionadas con la contracción se	
		encuentran también en células no musculares	189
		Las proteínas contráctiles y reguladoras pueden ser detectadas por me-	
		dio de anticuerpos específicos	189
		Se pueden reconocer dos tipos de microfilamentos	190
		Los microfilamentos intervienen en todos los procesos de motilidad	100
		de las células	190
		voluminosas	191
		El movimiento ameboide es característico de las amebas y de muchas	191
	4	células libres	191
	A	Resumen: Microfilamentos, ciclosis y movimiento ameboide	193
	13	Trosument. Wild of indirection, discussion of the virtue and bodies	
10.		ulo endoplásmico y secreción celular I	197
	10-1.	Morfología general del sistema de endomembranas	199
		Los ribosomas se unen con el retículo endoplásmico por la unidad 60 S	
		y parece implicar a las riboforinas	202
		El retículo endoplásmico liso carece de ribosomas	202
	100	Resumen: Retículo endoplásmico	204
	10-2.	Microsomas. Estudios bioquímicos	204
		Las membranas microsómicas tienen una composición lipoproteica compleia	204
		Los microsomas contienen dos sistemas trasportadores de electrones	205
		Varias enzimas microsómicas producen glucosidación e hidroxilación	200
		de aminoácidos	207
		Las enzimas microsómicas muestran asimetría a través de la membrana .	207
		Resumen: Microsomas	208
	10-3.	Funciones del retículo endoplásmico	208
· dat		La biogénesis de la membrana implica un mecanismo múltiple	208
		Las membranas del retículo endoplásmico fluyen a través del citoplas-	
		ma	209
		Los iones y pequeñas moléculas son trasportados a través de la membra-	000
		na del retículo endoplásmico	209
		El retículo endoplásmico liso tiene funciones especiales en la detoxifi-	209
		cación, síntesis de lípidos y glucogenólisis	210
	10-4	El retículo endoplásmico y la síntesis de proteínas exportables	210
	10-4.	En el ARN mensajero, unido al retículo endoplásmico hay codones	210
		iniciales que codifican un péptido señal hidrofóbico	211
		El péptido señal es luego separado por una peptidasa señal	211
		Las proteínas de membrana se fabrican y se organizan en diversos com-	
		partimientos	212
		Resumen: Síntesis de proteínas exportables. La hipótesis señal	213
11	Λ		215
11.		nto de Golgi y secreción celular II	215
	11-1.	Morfología del aparato de Golgi (dictiosomas) Los dictiosomas tienen una cara proximal o formadora y otra distat	215
		en vías de maduración que contiene el GERL	216
		La polarización de los dictiosomas implica la diferenciación de la mem-	210
		brana	217
		Resumen: Morfología del aparato de Golgi	220
	11-2.	Citoquímica del aparato de Golgi	221
		La composición química del aparato de Golgi es intermedia entre el RE	-
		y la membrana plasmática	221

VI
XV

	11-3.	Las glucosiltrasferasas se concentran en el Golgi Resumen: Citoquímica del aparato de Golgi Funciones del aparato de Golgi La síntesis de glucoesfingolípidos y glucoproteínas es una de las funcio-	222 222 223
		nes principales del Golgi	223
		cerosas	225
	-16.5	La función principal del aparato de Golgi está relacionada con la secre- ción	225
		El ciclo secretor puede ser continuo o discontinuo	225
		lisosomas	230
		de la secreción	231 232
12.	Mitod	condrias y fosforilación oxidativa	236
	12-1.	Morfología de las mitocondrias	237
	12-2.	Estructura mitocondrial	239
		La matriz mitocondrial contiene ribosomas y un ADN circular \dots Las partículas F_1 están en el lado M de la membrana mitocondrial	240
		interna	240
		celulares	240
		degenerar	245
	12-3.	Resumen: Estructura de las mitocondrias	245
		Las membranas externa e interna muestran diferencias en estructura y composición química	247
		Las enzimas mitocondriales están altamente compartamentalizadas	247
		La membrana interna muestra variaciones regionales en estructura y contenido enzimático	249
	124	Resumen: Aislamiento de las membranas mitocondriales	249
	12-4.	Organización molecular y funciones de las mitocondrias Los electrones fluyen a lo largo de la cadena de citocromos que tienen	250
	156	un gradiente de potencial de oxidorreducción	250
279		culares	250
		ción en tres sitios	253
		La ATPasa mitocondrial tiene una estructura compleja y funciona como una bomba de protones	253
		Los diversos complejos de la cadena respiratoria y el sistema de fosfori- lación están organizados topográficamente	254
		La hipótesis quimiostática sustenta una unión electroquímica entre la cadena respiratoria y el sistema de fosforilación	255
		La hipótesis química-conformacional implica interacciones moleculares de corta distancia	256
	125	Resumen: Organización molecular y función Permeabilidad mitocondrial	256
	12-5.	El ADP, ATP y Pi se trasportan por medio de trasportadores especí-	257
		ficos	257
		de la fosforilación oxidativa	257
		diversos agentes	259 259
		Resumen: Permeabilidad mitocondrial	260

XVI INDICE

	12-6.	Biogénesis de las mitocondrias	260 261 261
		Los ribosomas mitocondriales son más pequeños que los citoplásmicos . Las mitocondrias pueden sintetizar principalmente proteínas hidrofóbicas	262 262
		La hipótesis de la simbiosis sostiene que las mitocondrias y los cloro- plastos son parásitos procariontes intracelulares	263
		Resumen: Biogénesis mitocondrial	263
13.	Los I 13-1	isosomas y el sistema digestivo de la célula. Peroxisomas . Características principales de los lisosomas	267 267
		Diversas técnicas citoquímicas ayudan a identificar los lisosomas	268
		Los lisosomas son muy polimórficos	270
		darios	270
		región del Golgi	272 272
	13-2.	Endocitosis	273
	10.65	La fagocitosis es el proceso por el cual la célula ingiere material sólido . La pinocitosis se refiere a la ingestión de líquidos	273 273
		La micropinocitosis también se utiliza para el trasporte de líquidos	276
		La micropinocitosis se asocia frecuentemente con la formación de ve- sículas con cubierta	277
		La endocitosis es un mecanismo activo que involucra la contracción de	277
		microfilamentos	277 277
	13-3.	Funciones de los lisosomas. Digestión intracelular	278
		ponentes celulares	278
		es importante en muchos procesos del desarrollo Las enzimas lisosómicas pueden ser liberadas y actuar sobre el material	278
		extracelular	278
		na tiroidea y en la crinofagia	278 278
		Los lisosomas son importantes en las células germinales y en la ferti-	279
		lización	
		mes en el hombre Las llamadas enfermedades por acumulación se deben a mutaciones	279
		que afectan las enzimas lisosómicas	279
		Las células vegetales tienen lisosomas que intervienen en la germina- ción de las semillas	280
	-mote	Resumen: Funciones de los lisosomas	280 280
	13-4.	Peroxisomas	
		xidasas	280 281
		Los peroxisomas contienen enzimas relacionadas con el metabolismo	
		del agua oxigenada	281
		ración	281 281
			201
14.	La cé	lula vegetal y el cloroplasto	284 285
	14-1.	El desarrollo de las paredes primaria y secundaria está relacionado con	
		la diferenciación celular	287

INDICE	XVI
--------	-----

	Smith 20	Los componentes de la pared celular se originan en el Golgi o en relación con la membrana plasmática	287
		centes	288 288
	14-2.	El citoplasma de la célula vegetal	288
		proteína, glioxisomas y vacuolas	289
		de expansión y una tercera de deshidratación	289 289
		líticas	289
		Los dictiosomas intervienen en varios procesos de secreción Las mitocondrias pueden ser distinguidas de los protoplástidos	290 292
	14-3.	Resumen: El citoplasma de la célula vegetal	292 292
		la fotosíntesis	293 293
		Los cloroplastos son móviles y se dividen	293
		ma y los tilacoides La criofractura es la que mejor revela la subestructura de la membrana	293
		del tilacoide	295
	14-4	de los grana y del estroma	297 297
		En la membrana tilacoide hay varios complejos de clorofila-proteína El factor CF ₁ de acoplamiento de la fosforilación y los sistemas foto-	299
	-Reile	sintéticos tienen una disposición vectorial	300 300
	14-5.	Fotosíntesis	301
AC.		La reacción primaria de la fotosíntesis es la reacción fotoquímica El ciclo fotosintético de la reducción del carbono o ciclo de Calvin representa el principal grupo de reacciones químicas de la fotosín-	302
		tesis	304 305
34	110	Resumen: La fotosíntesis y el cloroplasto	305
	14-6.	Un modelo estructural y funcional de la membrana del cloroplasto Bajo la acción de la luz y de la oscuridad se producen flujos de iones y cambios de conformación	306 307
	147	Resumen: Modelo estructural-funcional y cambios de conformación	308
	14-7.	Los cloroplastos como organoides semiautónomos	309 309
		QUINTA PARTE. EL NUCLEO Y LOS CROMOSOMAS	
5.		cleo interfásico, la cromatina y los cromosomas	315 316
	10-1.	La envoltura nuclear	316 318
		Los poros nucleares constituyen una barrera de difusión selectiva entre el núcleo y el citoplasma	318
		Las proteínas nucleares se acumulan selectivamente en el núcleo	319 319
	15-2.	La cromatina	321
		Los núcleos contienen una cantidad constante de ADN	321
		matina	322

XVIII

		Los extendidos de cromatina permiten revelar una estructura en forma	
		de cuentas de collar	324
		El nucleosoma es un octámero de histonas con 200 pares de bases de	000
		ADN	326
		La fibra de cromatina es resultado del plegamiento de la cadena de	220
		nucleosomas	328 328
	15-3.	Resumen: La cromatina	329
	15-3.	La forma del cromosoma está determinada por la posición del centró-	329
		mero	329
		Nomenclatura de los componentes: cromátida, centrómero, cinetoco-	0_0
		ro, telómero, satélite, constricción secundaria, organizador nu-	
		cleolar	329
		El cariotipo comprende todas las características de un conjunto cromo-	
		sómico	331
		Les proteínas no histónicas forman un armazón cromosómico, al cual	270
		se unen las asas de ADN	333
	15-4.		335
		La heterocromatina puede ser facultativa o constitutiva	335
	4500	La heterocromatina es generalmente inactiva desde el punto de vista	336
		genético	336
		Resumen: Los cromosomas y la heterocromatina	337
	15-5	El nucléolo	338
		El nucléolo muestra una zona fibrilar y otra granular	338
		El nucléolo se desarma y rearma durante la mitosis	340
		Resumen: El nucléolo	340
/		de los grana y del estroma	
16X		celular y replicación del ADN	343
PO'C	16-1.	Ciclo celular	343
		La interfase comprende los períodos G ₁ , S y G ₂	344 344
		G ₁ es el período más variable del ciclo celular	344
		cion durante G ₁ , S y G ₂	345
		Los cromosomas condensados no sintetizan ARN	345
		En etapas definidas del ciclo celular se producen determinados proce-	
		sos moleculares	347
		Resumen: Ciclo celular	348
	16-2.	Replicación del ADN	349
		La replicación del ADN es semiconservadora	349
		La replicación del ADN en <i>E. coli</i> es bidireccional	351
		La síntesis de ADN es discontinua	352
		La trascriptasa invertida copia ARN en ADN	352
		Los cromosomas eucarióticos tienen múltiples sitios de origen de re-	354
		plicación	354
		El número de unidades de replicación es regulada durante el desarrollo .	354
		Las células eucarióticas deben tener un mecanismo para prevenir la	00.
		reanudación de la replicación dentro del mismo ciclo	355
		Los nuevos nucleosomas se arman simultáneamente con la replica-	
		ción de ADN	355
		La síntesis de ARN continúa durante la replicación del ADN	356
		Las enzimas que reparan el ADN pueden remover dímeros de timina	356
		En la xerodermia pigmentosa los pacientes tienen una reparación de-	0
		fectuosa del ADN	357
		Resumen: Replicación del ADN	357
17 X	Mito	sis y división celular	361
		Descripción general de la mitosis	361
		Durante la profase las cromátidas se condensan, el nucléolo se desinte-	28
		gra y se forma el huso	363
		Durante la metafase los cromosomas se orientan en el plano ecuatorial	363

INDICE	XI	X

		Durante la anafase los cromosomas hijos se dirigen hacia los polos Durante la telofase los núcleos hijos se reconstruyen	363 364
	17-2	Resumen: Etapas de la mitosis Organización molecular y papel funcional del aparato mitótico	364 365
	el re	El centrómero está asociado con el cinetocoro, que es donde se implantan los microtúbulos del huso	366
		Hay microtúbulos cinetocóricos, polares y libres	369
		coros	369
		teracción entre los microtúbulos polares y los cinetocóricos La hipótesis del equilibrio dinámico y del mecanismo de deslizamiento	371
		tratan de explicar el movimiento de los cromosomas	371
		basado en actina y miosina	372
		seguido por la placa celular	372 374
18.	La m	eiosis y la reproducción sexual	377
,	¥8-1.	Comparación entre mitosis y meiosis	378
	18-2.	Descripción general de la meiosis	379
		Los cromosomas leptonémicos parecen únicos y muestran cromómeros. Durante el cigonema se produce el apareamiento de los homólogos y	379
		se forma el complejo sinaptonémico	379
		Durante el paquinema se produce el crossing-over y la recombinación	004
		entre las cromátidas homologas	384
		mólogos y su recombinación	384
		El nodulo de recombinación está probablemente relacionado con el	150
		crossing-over	385
		Durante el diplonema los cromosomas apareados se separan pero que- dan unidos por los quiasmas	385
			386
		La división meiótica I separa los centrómeros homólogos	386
		La división meiótica II separa los centrómeros hermanos	386
420		La distribución de los cromosomas mitóticos y meióticos depende de	000
		la orientación del centrómero	386 388
	18-3.	Consecuencias genéticas de la meiosis y tipos de meiosis	389
		En los vegetales la meiosis es intermediaria o espórica	389
		En la mujer la meiosis puede durar hasta cincuenta años	391
		En el hombre la meiosis comienza después de la pubertad	391
		La fecundación implica la interacción especie-específica entre los ga-	391
		metos	392
	18-4.	Bioquímica de la meiosis	392
		Resumen	393
19.	Citog	enética. Cromosomas y herencia	395
	19-1.	Leyes de la herencia mendeliana	395
		La ley de la segregación enuncia que los genes se distribuyen sin mez-	200
		clarse	396
		en cromosomas diferentes se distribuyen en forma independiente	
		durante la meiosis	397
		Hay ligamiento entre los genes cuando están contenidos en un mismo cromosoma	397
		El ligamiento puede romperse por recombinación durante la profase	397
	WOL 10	meiótica	399
		La <i>Neurospora</i> es ideal para estudiar la recombinación y la expresión de los genes	399
		Resumen: Fundamentos de citogenética	399

	19-2.	Cambios cromosómicos y citogenéticos	401
		cromosomas	401
		mitosis Las aberraciones cromosómicas se deben a alteraciones estructurales,	402
		mientras que las mutaciones génicas se producen a nivel molecular . Las radiaciones y los mutágenos químicos actúan principalmente sobre	402
		la molécula de ADN	402 405
		Las principales aberraciones cromosómicas son deleción, duplicación, traslocación, inversión, e intercambio de cromátidas hermanas	405
	orași	El intercambio de cromátidas hermanas aumenta en las enfermedades en que está alterada la reparación de ADN	407
372	19-3.	Los cromosomas desempeñan un papel fundamental en la evolución Resumen: Aberraciones cromosómicas, acción de mutágenos, citogenética y evolución	407 409
	1	Lo. Heteropyronizys, or grow alcohom y sizedim drade ablancament vibility	601
20.	Citog 20-1	enética humana El cariotipo humano normal En el cariotipo los cromosomas se ordenan por tamaño y posición del	412 413
		centrómero	413
		rales de los cromosomas	415
		ficación de los cromosomas	415 415
	20-2.	Cromosomas sexuales y determinación sexual	417
		interfásico	418
388		La cromatina Y corresponde a la región heterocromática del cromosoma Y	420
		Aunque el sexo es determinado por los cromosomas sexuales, la diferenciación sexual es influida por factores hormonales	421
	20-3.	Resumen: Cromosomas sexuales y determinación del sexo	421 422
		La aneuploidía se origina por el mecanismo de no disyunción de los cromosomas	423
		Las traslocaciones recíprocas pueden identificarse más fácilmente mediante el bandeado	423
		En diversos síndromes humanos hay anormalidades en los cromosomas sexuales	423 425
		Además de la aneuploidía, otros síndromes pueden deberse a aberraciones estructurales	427
		Con el uso de técnicas de bandeado se han detectado más de treinta síndromes nuevos	427
		Ciertos tumores muestran aberraciones cromosómicas específicas	427
		Resumen: Anormalidades cromosómicas	427
	20-4.	Los cromosomas humanos y el mapa genético El daltonismo y la hemofilia son las enfermedades ligadas al sexo mejor	428
		conocidas	428
		ligamiento, hibridización celular somática e hibridización <i>in situ</i> . Se han hecho progresos considerables en la localización de genes en los	430
		cromosomas y en regiones de éstos	430
		Resumen: Mapa genético humano	431

XXI

	SEXTA PARTE. EXPRESION DE LOS GENES	
21.	El código genético y la ingeniería genética	435
	Los genes codifican proteínas. Errores del metabolismo	436
	Los genes están compuestos de ADN. Trasformación	437
	Tres nucleótidos contienen la información para un aminoácido Se usaron mensajeros artificiales para codificar el código genético	440
	Hay 61 codones para codificar 20 aminoácidos y por lo tanto hay co-	441
	dones sinónimos	441
	El código genético es universal	442
	21-2.) Mutaciones y código genético	443
	Los mutágenos químicos son muy específicos	443
	Resumen: Mutaciones y código genético	444
	El secuenciamiento de los 5375 nucleótidos del fago $\phi X 174$ reveló la	
	existencia de genes con partes superpuestas	446
	nético	446
	tico	447
	21-4. Ingeniería genética. Enzimas de restricción	448
	ADNLos genes eucarióticos pueden introducirse en plásmidos y ser clona-	448
	dos en <i>E. coli</i>	449
		451
X22.	Trascripción y procesamiento del ADN 22-1. ARN mensajero en procariontes	454 455
	Los ARN mensajeros se trascriben por una única ARN polimerasa	456
-	En la trascripción hay tres etapas: iniciación, alargamiento y terminación	456
	La trascripción está acoplada a la síntesis de proteínas	457 459
	22-2. Trascripción en eucariontes	459
IRP.	La trascripción de los ARNs eucarióticos se cumple con la interven- ción de ARN polimerasas	459
	La trascripción puede visualizarse con el microscopio electrónico	461 461
	22-3. ARN mensajero eucariótico	461
	El extremo 5' del ARNm se bloquea con 7-metil-G El extremo 3' del ARNm tiene un segmento de poli A de 200 a 300	462
	nucleótidos	462
	codifican	463
	El ARN heterogéneo nuclear puede corresponder a precursores de ARNm con secuencias intercaladas	463
	Los ARNms eucarióticos están asociados con proteínas Resumen: ARN mensajero eucariótico	465
23.	Ribosomas y función del nucléolo	101
23.	23-1. Ribosomas	469 469
	Los ribosomas pueden ser libres o estar unidos a membrana	469 470
	La subunidad mayor en los eucariontes tiene ARNs 28 S, 5.8 S y 5 S.	
		472 472

X

XXII INDICE

	23-2.	Proteínas ribosómicas	473
		truidos en ribosomas funcionales	473
		Hay poca homología entre ribosomas procarióticos y eucarióticos	474
		Resumen: Organización de los ribosomas	475
	23-3	Biogénesis del ribosoma y función del nucléolo	475
	25-5.	El organizador nucleolar contiene ADN ribosómico	476
			470
		Los genes ribosómicos se disponen en hilera, separados por espacia-	470
		dores	476
		Los genes 5 S se encuentran fuera del organizador nucleolar	477
		El ARN ribosómico se amplifica mucho en los ovocitos	478
		Los ARNs ribosómicos sufren un complejo procesamiento en el nu-	
		cléolo	479
		La biogénesis de los ribosomas se puede observar con el microscopio	
		electrónico	480
		Resumen: Biogénesis de los ribosomas	482
		Troduction. Biogenicals de los riboserias	102
24.	Sínte	sis de proteína	486
27.		ARN de trasferencia	486
	24-1.		
	NEW ISI	El precursor del ARNt sufre un complejo procesamiento	488
	232	La fidelidad de la síntesis depende de las AA-ARNt sintetasas	488
1	PER T	Resumen: ARN de trasferencia	489
	24-2.	Ribosomas y síntesis de proteínas	490
		Los polisomas contienen varios ribosomas unidos a una molécula de	
		ARNm	490
		Durante la síntesis hay un ciclo ribosoma-polisoma	491
		El ARNm contiene una secuencia que se une a la subunidad menor del	0
		ribosoma	492
			492
		Las proteínas procarióticas comienzan con formilmetionina	
		Los factores de iniciación de la síntesis son IF1, IF2 e IF3	493
		Los factores de iniciación eucarióticos son más complejos	493
		El factor IF2 eucariótico se fosforila por una proteinoquinasa depen-	
		diente de AMPc	493
		Los factores de alargamiento de la cadena polipeptídica son EFTu +	
		EFTs y EFG	493
		La subunidad mayor del ribosoma interviene en el alargamiento	495
		La terminación de la cadena comprende los codones UAA, UGA y	
		UAG y los factores de liberación R1 y R2	496
		Los antibióticos y las toxinas son útiles en biología molecular y me-	490
			400
		dicina	496
		Las proteínas secretorias tienen un péptido hidrofóbico "señal"	496
		Resumen: Síntesis de proteína	497
05		entraction of the present of the present of the present of the property of the present of the pr	
25.		l <mark>ación del gen</mark>	501
	25-1.	Regulación del gen en procariontes	502
		La inducción y la represión enzimáticas están controladas por repre-	
		sores que se unen a los operadores	502
		El operón-lactosa codifica β -galactosidasa, permeasa-lac y trasacetilasa .	502
		El gen i codifica la proteína represora que puede unirse al inductor	502
		El operador es una secuencia de 21 nucleótidos en el ADN que tiene	-
		simetría doble	503
		Los represores regulan los genes uniéndose al promotor	
			503
		El modelo de Jacoh-Monod se basa en un mecanismo de control ne-	39.77
		gativo	504
		El control positivo de la trascripción del operón-lac se hace por el com-	
		plejo CAP-AMPc	505
		El operón del triptófano tiene una regulación doble	506
		A nivel de la actividad enzimática hay un control más fino del meta-	
		bolismo	507
		Resumen: Regulación del gen en procariontes	507
	25.2	Regulación del gen en eucariontes	508
	252.	La heterocromatina no se trascribe	508
		La Heterocromatina no se trascribe	OUR

INDICE	***	XXIII

	La presencia de ADN repetitivo es característica de los eucariontes Los ADNs satélites contienen las secuencias más repetitivas Los genes moderadamente repetitivos son los del ADNr, del ADN 5 S y de las histonas Resumen: Regulación del gen en eucariontes y ADN repetitivo 25-3. Regulación a nivel del cromosoma. Cromosomas gigantes Los cromosomas politénicos tienen 1000 moléculas de ADN Las bandas representan cromómeros alineados Los puffs son sitios de trascripción Los puffs pueden ser inducidos por ecdisona y por choque térmico Los cromosomas plumulados se encuentran en los ovocitos en el diplonema Las asas laterales tienen una intensa síntesis de ARN Resumen: Regulación a nivel cromosómico	509 510 511 511 513 513 514 516 516 516
26.	Diferenciación celular 26-1. Características generales de la diferenciación celular El estado diferenciado es estable La determinación precede a la diferenciación morfológica 26-2. Interacciones nucleocitoplasmáticas Interacciones nucleocitoplasmáticas en Acetabularia Los núcleos de eritrocitos pueden reactivarse por fusión celular Con citocalasina B se pueden reparar carioplastos y citoplastos	522 524 524 524 524 525 526
	La fusión celular permite obtener líneas celulares que secretan anti- cuerpos puros La expresión génica puede ser reprogramada Resumen: Interacciones nucleocitoplasmáticas 26-3. Mecanismos moleculares de la diferenciación celular El genomio permanece constante. Trasplante nuclear	527 529 531 532 532
571 571 571 572	l amplificación génica no implica la diferenciación El control a nivel de la traducción no explica la diferenciación La diferenciación celular se controla a nivel de la trascripción Los determinantes citoplasmáticos se localizan en el citoplasma del huevo y son importantes en el desarrollo La diferenciación celular está relacionada con la interacción celular Resumen: Mecanismo de la diferenciación	532 532 533 535 538 539
	SEPTIMA PARTE. BIOLOGIA CELULAR Y MOLECULAR DE CELULAS ESPECIALIZADAS	
27.	27-1. Estructura de la fibra muscular estriada	545 546 547
	Los miofilamentos gruesos y finos son los componentes macromolecu- lares contráctiles	548 548
	El músculo liso carece de línea Z	549 550 550 551
	Los miofilamentos finos están formados por actina, tropomiosina y troponinas	551 551
	Las diversas proteínas contráctiles y reguladoras se pueden localizar por medio de anticuerpos fluorescentes	552 553
		555

*

XXIV INDICE

		La contracción muscular comprende la formación y ruptura cíclicas de	
		las uniones actina-miosina	555 556
	27.4	Regulación y energética de la contracción	556
	27-4.	Un modelo de regulación molecular involucra el desplazamiento de la	000
		tropomiosina después de la unión del Ca ²⁺ a la troponina C	557
		La energía de la contracción se origina por oxidación fosforilativa y	
		por glucólisis	557
		Resumen: Regulación y energética de la contracción	557
	27-5.	Acoplamiento de excitación-contracción	558
		El retículo sarcoplásmico tiene un componente longitudinal con cister-	EEO
		nas terminales que forman la tríada	558
		brana plasmática y conduce impulsos hacia el interior	558
		La estimulación libera Ca ²⁺ de las cisternas terminales	560
		Una ATPasa activada por Ca ²⁺ se encuentra en el retículo sarcoplás-	
		mico y actúa como una bomba de Ca ²⁺	560
	ADZ 5	Resumen: El acoplamiento excitación-contracción y el retículo sarco-	
602	A COLOR	plásmico	560
BC34	100		
28.	Neuro	obiología celular y molecular	563
	28-1.	Organización general de la neurona y función de las fibras nerviosas	565
		La estructura del axón se caracteriza por la presencia de neurofibrillas	
		y neurotúbulos	565
		Las funciones biosintéticas de la neurona se localizan en el pericarion	565
		Las macromoléculas fluyen por el axón en dirección centrífuga	568 568
		El flujo axónico centrífugo puede ser rápido o lento	500
		yen en sentido centrípeto	570
		La toxina tetánica y algunos virus neurotrópicos pueden ser trasporta-	493
		dos en sentido retrógrado y trasináptico	571
		La velocidad de conducción en las fibras nerviosas está relacionada con	
		el diámetro, presencia de mielina y longitud del internodo	571
		El potencial se propaga como una onda de despolarización con una am-	F 7 1
		plitud fija	571 572
		En las fibras mielínicas la conducción es saltatoria	312
		duados y no se propagan	573
		La propagación de los potenciales de acción depende de la apertura de	496
		canales de sodio y de potasio en la membrana axónica	573
		Resumen: Organización general de la neurona y función de las fibras	435
	-	nerviosas	575
	28-2.	Trasmisión sináptica y estructura de las sinapsis	577
		La trasmisión del impulso nervioso puede ser eléctrica, pero general- mente está mediada por un mecanismo químico	577
		La trasmisión sináptica puede ser excitatoria o inhibitoria	578
		Varios miles de sinapsis pueden hacer contacto con una neurona	579
		El número de sinapsis está relacionado con el de espinas dendríticas	579
		La ultraestructura de la sinapsis sugiere la existencia de muchos tipos	
		de contactos funcionales	580
		Los receptores a las lectinas y las densidades postsinápticas pueden in-	E04
		fluir en la formación y mantenimiento de las sinapsis	581
		La membrana presináptica muestra proyecciones especiales en las zo-	581
		nas activas	501
		compleja	583
	28-3	Vesículas sinápticas y liberación cuántica del neurotrasmisor	584
	TOTATO	Por su morfología y citoquímica se pueden reconocer varios tipos de	507
		vesículas sinápticas	584
		Durante el desarrollo de la neurona el tipo de neurotrasmisor y de ve-	WIE .
		sícula sináptica puede ser determinado por el medio	584

INDICE	XXV

	Las membranas del sinaptosoma y las vesículas sinápticas pueden ser aisladas por fraccionamiento celular	585
	El sistema de la acetilcolina es un ejemplo en la síntesis y metabolismo de los neurotrasmisores	588 589
	La liberación del trasmisor está relacionada con el papel de las vesículas sinápticas en la trasmisión nerviosa	589
	la exocitosis y el reciclaje de las vesículas sinápticas	590
	es mediado por iones calcio	590 590
28-4.	Receptores sinápticos y respuesta fisiológica Los receptores sinápticos son proteínas hidrofóbicas que están inclui-	592
	das en el armazón lipídico de la membrana	592
	sodio y potasio	594
	den inducir fluctuaciones por acetilcolina Se ha propuesto un modelo oligomérico de receptor colinérgico	594 595
	Algunas funciones sinápticas de larga duración implican el uso de un segundo mensajero	595
	El AMP cíclico interviene en la fosforilación de proteínas de membrana y de otras en el interior de la célula	597 598
	mesument. Los receptores y la respuesta fisiologica	090

altulos posteriores.

consentate del moderno descrolla de la capación resultar.